Jumat, 02 Maret 2012

Nonlinear finite elements/Lagrangian finite elements


Nonlinear finite elements/Lagrangian finite elements

Lagrangian Finite Elements[edit]

Two types of approaches are usually taken when formulating Lagrangian finite elements:
  1. Total Lagrangian:
    • The stress and strain measures are Lagrangian, i.e.,they are defined with respect to the original configuration.
    • Derivatives and integrals are computed with respect to the Lagrangian (or material) coordinates (\mathbf{X}).
  2. Updated Lagrangian:
    • The stress and strain measures are Eulerian, i.e.,they are defined with respect to the current configuration.
    • Derivatives and integrals are computed with respect to the Eulerian (or spatial) coordinates (\mathbf{x}).

The following 1-D examples illustrate what these approaches entail.
Consider the axially loaded bar shown in Figure 1.
Figure 1. Axially loaded bar
In the reference (or initial) configuration, the bar has a length L0, an area A0(X), and density ρ0(X). A tensile force T is applied at the free end. In the current (or deformed) configuration at time t, the length of the bar increases to L, the area decreases to A(X,t), and the density changes to ρ(X,t).

Motion in Lagrangian Form[edit]

The motion is given by

{
x = \varphi(X, t) = x(X, t) ~, ~~\qquad X \in [0, L_0]~.
}
For the reference configuration,

X = \varphi(X, 0) = x(X, 0) ~.
The displacement is
 
{
u(X, t) = \varphi(X, t) - X = x - X ~.
}
For the reference configuration,
 
u_0 = u(X, 0) = \varphi(X, 0) - X = X - X = 0 ~.
The deformation gradient is

{
F(X, t) = \frac{\partial }{\partial X}[\varphi(X,t)] = \frac{\partial x}{\partial X} ~.
}
For the reference configuration,
 
F_0 = F(X, 0) = \frac{\partial }{\partial X}[\varphi(X,0)] = \frac{\partial X}{\partial X} = 1 ~.
The Jacobian determinant of the motion is

{
J = \cfrac{A}{A_0} F ~.
}
For the reference configuration,

J_0 = \cfrac{A_0}{A_0} F_0 = 1 ~.

Hingga nonlinier unsur / elemen Lagrangian terbatas

Lagrangian Elemen Hinggasunting ]

Dua jenis pendekatan biasanya diambil ketika merumuskan Lagrangian elemen hingga:
  1. Jumlah Lagrangian:
    • Tegangan dan regangan adalah tindakan Lagrangian, yaitu, mereka didefinisikan sehubungan dengan konfigurasi asli.
    • Derivatif dan integral dihitung sehubungan dengan Lagrangian (atau bahan) koordinat (\ Mathbf {X}) .
  2. Diperbarui Lagrangian:
    • Tegangan dan regangan adalah tindakan Eulerian, yaitu, mereka didefinisikan sehubungan dengan konfigurasi saat ini.
    • Derivatif dan integral dihitung sehubungan dengan Eulerian (atau spasial) koordinat (\ Mathbf {x}) .

Contoh 1-D berikut menggambarkan apa pendekatan ini memerlukan.
Pertimbangkan bar dimuat secara aksial ditunjukkan pada Gambar 1.
Gambar 1. Secara aksial dimuat bar
Dalam referensi (atau awal) konfigurasi, bar memiliki panjang L 0, area A ρ 0 (X), dan kepadatan 0 (X). Sebuah gaya tarik T diterapkan pada akhir gratis. Dalam konfigurasi (atau cacat) saat ini pada waktu t, panjang bar meningkat menjadi L, daerah tersebut menurun ke A (X, t), dan perubahan densitas untuk ρ (X, t).

Gerak dalam Formulir Lagrangianedit ]

Gerakan ini diberikan oleh
{X = \ varphi (X, t) = x (X, t) ~, ~ ~ \ qquad X \ pada [0, L_0] ~. }
Untuk konfigurasi referensi,
X = \ varphi (X, 0) = x (X, 0) ~.
Perpindahan dilakukan
{U (X, t) = \ varphi (X, t) - X = x - X ~. }
Untuk konfigurasi referensi,
u_0 = u (X, 0) = \ varphi (X, 0) - X = X - X = 0 ~.
Gradien deformasi adalah
{F (X, t) = \ frac {\ partial} {\ partial x} [\ varphi (X, t)] = \ frac {\ partial x} {\ partial x} ~. }
Untuk konfigurasi referensi,
F_0 = F (X, 0) = \ frac {\ partial} {\ partial x} [\ varphi (X, 0)] = \ frac {\ partial x} {\ partial x} = 1 ~.
Determinan Jacobian gerak adalah
{J = \ cfrac {A} {} a_0 F ~. }
Untuk konfigurasi referensi,
J_0 = \ {cfrac a_0} {} a_0 F_0 = 1 ~.

Tidak ada komentar:

Posting Komentar